Radioligand binding reveals chymase as the predominant enzyme for mediating tissue conversion of angiotensin I in the normal human heart.

نویسندگان

  • Sidath D Katugampola
  • Anthony P Davenport
چکیده

We investigated the binding characteristics of angiotensin receptors and used this assay to determine the predominant enzyme capable of converting angiotensin I in the human left ventricle. In homogenates of human left ventricle, (125)I-[Sar(1),Ile(8)]angiotensin II bound with sub-nanomolar affinity, with a corresponding K(D) of 0.42+/-0.09 nM, a B(max) of 11.2+/-2.3 fmol.mg(-1) protein and a Hill slope of 1.04+/-0.04. The rank order of inhibitory potency of competing ligands for the (125)I-[Sar(1),Ile(8)]angiotensin II binding site was CGP42112>angiotensin II> or =angiotensin III=angiotensin I>losartan. The angiotensin type II (AT(2)) receptor predominated in the human left ventricle over the angiotensin type I (AT(1)) receptor, with an approximate AT(1)/AT(2) receptor ratio of 35:65. No specific (125)I-angiotensin IV binding sites could be detected in the human left ventricle. Using competitive radioligand binding assays, we were able to demonstrate that the chymase/cathepsin G enzyme inhibitor chymostatin was more potent than the angiotensin-converting enzyme (ACE) inhibitor captopril at inhibiting the conversion of angiotensin I in the human left ventricle. Aprotonin (an inhibitor of cathepsin G but of not chymase) had no effect on angiotensin I conversion, suggesting that the majority of the conversion was mediated by chymase. Thus, although the current therapies used for the renin-angiotensin system have focused on ACE inhibitors and AT(1) receptor antagonists, the left ventricle of the human heart expresses mainly AT(2) receptors and the tissue-specific conversion of angiotensin I occurs predominantly via chymase rather than ACE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart.

Although angiotensin II (Ang II)-forming enzymatic activity in the human left cardiac ventricle is minimally inhibited by angiotensin I (Ang I) converting enzyme inhibitors, over 75% of this activity is inhibited by serine proteinase inhibitors (Urata, H., Healy, B., Stewart, R. W., Bumpus, F. M., and Husain, A. (1990) Circ. Res. 66, 883-890). We now report the identification and characterizati...

متن کامل

Chymase-dependent production of angiotensin II: an old enzyme in old hearts.

Age-dependent alteration of the renin-angiotensin system (RAS) and generation of angiotensin II (Ang II) are well documented. By contrast, RAS-independent generation of Ang II in aging and its responses to exercise have not been explored. To this end, we examined the effects of chymase, a secretory serine protease, on the angiotensin-converting enzyme (ACE)-independent conversion of Ang I to An...

متن کامل

Implications of species difference for clinical investigation: studies on the renin-angiotensin system.

The justification for clinical investigation has its roots in the fact that physiological mechanisms and disease pathogenesis in animal models replicate mechanisms and pathogenesis in humans only in part. In the case of the renin-angiotensin system, there is species variation in the anatomic distribution of the renin-angiotensin system, in the active site of the renin enzyme, and in the structu...

متن کامل

Multiple pathways of angiotensin I conversion and their functional role in the canine penile corpus cavernosum.

Multiple pathways of angiotensin (Ang) I conversion and their functional role in the canine penile corpus cavernosum were investigated. Biochemical analysis revealed high activities of angiotensin-converting enzyme (ACE) (6.9 +/- 1.7 mU/mg of protein, mean +/- S.E.M., n = 8) and chymase-like enzyme (4.0 +/- 1.4 mU/mg of protein). Functional recording of isometric tension showed that Ang I (3 x ...

متن کامل

The one-two punch: knocking out angiotensin II in the heart.

Ang II plays an important role in the pathophysiology of cardiovascular disease. Angiotensin-converting enzyme (ACE) inhibitors lower Ang II levels by inhibiting conversion of Ang I to Ang II, but Ang II levels have been shown to return to normal with chronic ACE inhibitor treatment. In this issue of the JCI, Wei et al. show that ACE inhibition induces an increase in chymase activity in cardiac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical science

دوره 102 1  شماره 

صفحات  -

تاریخ انتشار 2002